Product Information

ECN 425
EQN 437

Absolute Rotary Encoders with EnDat22 for Safety-Related Applications

May 2017
ECN 425, EQN 437

Rotary encoders for absolute position values with safe singletum information

- Blind hollow shaft with steel clamping ring:
 - Ø 12 mm (68S)
 - Ø 10 mm (68T)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Ø 10H6 68S</td>
</tr>
<tr>
<td>D2</td>
<td>Ø 10g7 68T</td>
</tr>
<tr>
<td>D1</td>
<td>Ø 12I6 68T</td>
</tr>
<tr>
<td>D2</td>
<td>Ø 12g7 68T</td>
</tr>
</tbody>
</table>

Required mating dimensions

mm

Tolerancing ISO 8015
ISO 2768 - m H
< 6 mm: ±0.2 mm

- Bearing of mating shaft
- M1 = Measuring point for operating temperature
- M2 = Measuring point for vibration
- ① = Connector coding
- ② = Clamping screw with hexalobular socket X8, tightening torque 1 Nm ±0.06 Nm
- ③ = Compensation of mounting tolerances and thermal expansion, no dynamic motion permitted
- ④ = Protection against contact as per EN 60529
- ⑤ = Chamfer at start of thread is obligatory for materially bonding anti-rotation lock
- ⑥ = Direction of shaft rotation for output signals as per the interface description
Functional safety

For applications up to 72 rpm, SIL 2 according to EN 61508 (further basis for testing: EN 61800-5-2)
- Category 3, PL d as per EN ISO 13849-1:2008
 - Safe in the singleturn range

PFH

\[\leq 10 \cdot 10^{-9} \text{ (Probability of dangerous Failure per Hour)} \]

Safe position

- **Encoder:** ±1.76° (safety-related measuring step: SM = 0.7°)
- **Mechanical coupling:** ±2° (exclusion for loosening of shaft and stator coupling, designed for accelerations of ≤ 150 m/s²)

Interface/ordering designation

EnDat 2.2/EnDat22

Position values/revolution

33554432 (25 bits)

Revolutions

- 4096 (12 bits)

Calculation time \(t_{\text{cal}} \)

\[\leq 7 \mu s \]

Clock frequency

\[\leq 8 \text{ MHz} \]

System accuracy at 20 °C

±20°

Voltage supply

DC 3.6 V to 14 V

Power consumption (max.)

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Consumption (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 V</td>
<td>≤ 600 mW</td>
</tr>
<tr>
<td>14 V</td>
<td>≤ 700 mW</td>
</tr>
</tbody>
</table>

Current consumption (typical)

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Consumption (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>85 mA (without load)</td>
</tr>
<tr>
<td>5</td>
<td>105 mA (without load)</td>
</tr>
</tbody>
</table>

Electrical connection

- **M12 radial flange socket, 8-pin** or 1 m cable PUR with M12 coupling (male), 8-pin

Shaft

- **Blind hollow shaft D = 12 mm** or **D = 10 mm**

Permissible speed

\[\leq 6000 \text{ rpm} \]

Starting torque at 20 °C

\[\leq 0.01 \text{ Nm} \]

Moment of inertia of rotor

\[\leq 6 \cdot 10^{-6} \text{ kgm}^2 \]

Angular acceleration of rotor

\[\leq 4 \cdot 10^4 \text{ rad/s}^2 \]

Permissible axial motion of measured shaft

\[\leq 1 \text{ mm} \]

Vibration

55 Hz to 2000 Hz

Shock

6 ms

\[\leq 300 \text{ m/s}^2; \text{ flange socket version: } 150 \text{ m/s}^2 \text{ (EN 60068-2-6)} \]

\[\leq 2000 \text{ m/s}^2 \text{ (EN 60068-2-27)} \]

Operating temperature

\[-30 \text{ °C to 100 °C} \]

Trigger threshold for error message due to temperature

125 °C in the scanning ASIC (measuring accuracy of internal temperature sensor ±4 K)

Relative humidity

\[\leq 93 \% \text{ (40 °C/21 d as per EN 60068-2-78); without condensation} \]

Protection

EN 60529

- **IP67 at housing**; **IP64 at shaft inlet**
 - (See Isolation under Electrical safety in the Interfaces of HEIDENHAIN Encoders brochure; contamination from the ingress of liquid must be prevented.)

Mass

\[\approx 0.3 \text{ kg} \]

Valid for ID

- 678920-03
- 678920-04
- 678920-05
- 678920-06
- 678922-03
- 678922-04
- 678922-05
- 678922-06

Please select when ordering

Bold: These preferred versions are available on short notice

1) Further tolerances may occur in subsequent electronics after position value comparison (contact manufacturer of subsequent electronics)

2) 10 Hz to 55 Hz constant over distance 4.9 mm peak to peak

3) For information on operating temperature, shaft speed and supply voltage, see General mechanical information in the Rotary Encoders brochure

4) The internal temperature is not designed for functional safety
Mounting

The rotary encoder is slid by its hollow shaft onto the measured shaft and fastened by a screw (tightening torque 1 Nm ±0.06 Nm). The stator is connected without a centering collar on a flat surface.

For the hollow-shaft connections 68S and 68T, the repetition of fastening reduces the screw force. In order to retain the required safety factor for friction-locked connections, the maximum number of permissible fastening repetitions is limited to four. A mechanical fault exclusion cannot be guaranteed for more repetitions.

In these cases, new clamping rings must be ordered separately.

Clamping ring for 10 mm ID 540741-06
Clamping ring for 12 mm ID 540741-07

The following maximum torque M_{max} is to be used when designing the mechanical fault exclusion for the shaft connection:

$M_{\text{max}} = 1 \text{ Nm}$

The customer’s mechanical design must ensure that the maximum torque M_{max} occurring in the application can be transmitted.

<table>
<thead>
<tr>
<th></th>
<th>Mating shaft</th>
<th>Mating stator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Steel</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Tensile strength R_m</td>
<td>$\geq 600 \text{ N/mm}^2$</td>
<td>$\geq 220 \text{ N/mm}^2$</td>
</tr>
<tr>
<td>Interface pressure P_G</td>
<td>$\geq 500 \text{ N/mm}^2$</td>
<td>$\geq 200 \text{ N/mm}^2$</td>
</tr>
<tr>
<td>Surface roughness R_Z</td>
<td>$\leq 16 \mu\text{m}$</td>
<td></td>
</tr>
<tr>
<td>Coefficient of thermal expansion α_{therm}</td>
<td>$10 \cdot 10^{-6} \text{K}^{-1}$ to $17 \cdot 10^{-6} \text{K}^{-1}$</td>
<td>$\leq 25 \cdot 10^{-6} \text{K}^{-1}$</td>
</tr>
<tr>
<td>Minimum shear strength</td>
<td>Not applicable</td>
<td>120 N/mm^2</td>
</tr>
</tbody>
</table>

For a safe mechanical coupling, the following prerequisites are to be met by the customer.

For further mounting information and help, see the Rotary Encoders mounting instructions and the brochure.
Integrated temperature evaluation

This rotary encoder features a temperature sensor integrated in the encoder electronics. The digitized temperature value is transmitted purely serially over the EnDat protocol. Note that temperature measurement and transmission are not secure in the sense of functional safety.

With regard to the internal temperature sensor, the encoder supports two-stage cascaded signaling of excessive temperature. This consists of an EnDat warning and an EnDat error message.

In compliance with the EnDat specification, when the temperature reaches the warning threshold of the internal temperature sensor, it triggers an EnDat warning ("EnDat memory area for operating status," word 1 – warning, bit 2¹ – "temperature exceeded"). This warning threshold for the internal temperature sensor is saved in the EnDat memory area "Operating parameters," word 6 – "Threshold sensitivity warning bit for exceeded temperature," and can be individually adjusted. A product-specific default value is saved before shipping. The temperature measured by the internal temperature sensor is higher by a device-specific and application-specific amount than the temperature at the measuring point M1 in accordance with the dimension drawing.

The encoder features a further, but non-adjustable trigger threshold for the EnDat error message for excessive temperature of the internal temperature sensor, which when exceeded triggers an EnDat error message (EnDat memory area for operating status, word 0 – error messages, bit 2² – position and, in the additional datum 2 operating status error sources, bit 2⁵ – temperature exceeded). This threshold sensitivity depends on the device and is shown in the specifications.

HEIDENHAIN recommends setting the warning threshold depending on the application so that it lies sufficiently below the trigger threshold for the EnDat error message. The encoder’s intended use requires compliance with the operating temperature at the measuring point M1.
PWM 20
Together with the ATS adjusting and testing software, the PWM 20 phase angle measuring unit serves for diagnosis and adjustment of HEIDENHAIN encoders.

PWM 20

<table>
<thead>
<tr>
<th>Encoder input</th>
</tr>
</thead>
<tbody>
<tr>
<td>• EnDat 2.1 or EnDat 2.2 (absolute value with or without incremental signals)</td>
</tr>
<tr>
<td>• DRIVE-CLiQ</td>
</tr>
<tr>
<td>• Fanuc Serial Interface</td>
</tr>
<tr>
<td>• Mitsubishi high speed interface</td>
</tr>
<tr>
<td>• Yaskawa Serial Interface</td>
</tr>
<tr>
<td>• Panasonic serial interface</td>
</tr>
<tr>
<td>• SSI</td>
</tr>
<tr>
<td>• 1 Vpp/TTL/11 µApp</td>
</tr>
<tr>
<td>• HTL (via signal adapter)</td>
</tr>
</tbody>
</table>

Interface

USB 2.0

Voltage supply

AC 100 V to 240 V or DC 24 V

Dimensions

258 mm x 154 mm x 55 mm

ATS

Languages

Choice between English and German

Functions

• Position display
• Connection dialog
• Diagnostics
• Mounting wizard for EBI/ECI/EQI, LIP200, LIC 4000 and others
• Additional functions (if supported by the encoder)
• Memory contents

System requirements and recommendations

PC (dual-core processor > 2 GHz)
RAM > 2 GB
Operating systems: Windows Vista (32-bit), 7, 8, and 10 (32-bit/64-bit)
500 MB free space on hard disk

DRIVE-CLiQ is a registered trademark of SIEMENS AG.
Electrical connection

Pin layout

<table>
<thead>
<tr>
<th>8-pin flange socket or coupling M12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage supply</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>U_p</td>
</tr>
<tr>
<td>Brown/Green</td>
</tr>
</tbody>
</table>

Cable shield connected to housing; **U_p** = Power supply voltage

Sensor: The sensor line is connected in the encoder with the corresponding power line. Vacant pins or wires must not be used.

Note for safety-related applications: Only completely assembled HEIDENHAIN cables are qualified. Exchange connectors or modify cables only after consultation with HEIDENHAIN Traunreut.

Cables with M12 connecting element

<table>
<thead>
<tr>
<th>PUR connecting and adapter cable Ø 6 mm; [(4 x 0.14 mm²) + (4 x 0.34 mm²)]; A_p = 0.34 mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete with M12 connector (female) and M12 coupling (male), 8 pins each</td>
</tr>
<tr>
<td>1036372-xx</td>
</tr>
<tr>
<td>Complete with M12 connector (female), 8-pin, and D-sub connector (female), 15-pin</td>
</tr>
<tr>
<td>1036521-xx</td>
</tr>
<tr>
<td>Complete with M12 connector (female), 8-pin, and D-sub connector (male), 15-pin</td>
</tr>
<tr>
<td>1036526-xx</td>
</tr>
<tr>
<td>With one M12 connector (female), 8-pin</td>
</tr>
<tr>
<td>634265-xx<sup>1)</sup></td>
</tr>
</tbody>
</table>

A_p = Cross section of power supply lines
¹⁾ Connecting element must be suitable for the maximum clock frequency used.

Note for safety-related applications: Provide bit error rate as per specification 533095!

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH
Dr. Johannes-Heidenhain-Straße 5
83091 Traunreut, Germany
+49 8669 31-0
E-mail: info@heidenhain.de
www.heidenhain.de

This Product Information supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDENHAIN is always the Product Information document edition valid when the order is made.

For more information:

Comply with the requirements described in the following documents to ensure the correct operation of the encoder:
- Brochure: Rotary Encoders 349529-xx
- Brochure: Interfaces of HEIDENHAIN Encoders 1078628-xx
- Mounting Instructions: ECN 425/ECN 437 1165780-xx
- Specification for implementation in a safe control or inverter 533095-xx