Product Information

EIB 5000
Signal Converters for Temperature Measurement in Direct-Drive Motors
HEIDENHAIN EIB 5000 signal converters

Signal converters for temperature measurement in direct-drive motors

- Reduced cabling
- Overload protection of the direct-drive motor through monitoring of all three windings
- Faster response behavior to overheating through compensation of the transmission timing behavior of the temperature measurement (for direct-drive motors from ETET)
- More economical use of the direct-drive motor through operation up to its thermal load limit
- Suitability for various encoder interfaces and control platforms

Application

The HEIDENHAIN EIB 5000 series signal converters enable measurement of the temperature in direct-drive motors. To do so, the EIB 5000 units process values from up to three temperature sensors and compensate for the transmission timing behavior of the temperature measurement (for direct-drive motors from ETET). The maximum determined temperature is relayed to the upstream control. When the sensor box is used with a HEIDENHAIN encoder, the processed temperature values can be transmitted to the upstream control along with the position data. The control can use the temperature values to optimize the regulation of the direct-drive motor, thus ensuring a rapid shutoff in case of an overload.

The EIB 5181 is optimized for use in an electrical cabinet in combination with controls from HEIDENHAIN. The placement in an electrical cabinet makes it possible to use DIP switches in order to configure the necessary parameters. Also, the EIB 5181 offers a universal interface solution for encoders with 1 VPP, EnDat 2.1, and EnDat 2.2 interfaces. The encoders must be connected to the encoder input using a 25-pin D-sub connector, since the EIB transmits the temperature value to the control as an analog value.

The EIB 5181 is primarily designed for encoders with the EnDat 2.1 interface in conjunction with HEIDENHAIN controls. The EIB transmits the temperature to the control as an analog value (PT 1000 emulation) along with the information about the interface, which is determined by the encoder itself. Thanks to the IP65/67 rating, the EIB 5281 can be placed in direct proximity to the direct drive motor. This makes it possible to keep the length of the connecting cables for the temperature sensors very short. Depending on the type of direct-drive motor, a special variant of the EIB 5281 may be required (see Variants of the EIB 5200). The EIB 5281 can also be obtained with an additional switching output (see Switching outputs). Please contact HEIDENHAIN for more information.

The EIB 5211 is primarily designed for encoders with the EnDat 2.2 interface. The temperature value is transmitted to the control digitally in the protocol (if the interface supports this). The EIB 5211 itself does not influence the encoder interface. Not only does the EIB 5211 have a high IP65/67 rating, but its purely digital data transmission offers numerous important advantages as well. The transmission technology is particularly immune to noise and achieves an increased accuracy of the temperature evaluation (also see Emulation of PT 1000 behavior). Depending on the type of direct-drive motor, a special variant of the EIB 5211 may be required (see Variants of the EIB 5200). The EIB 5211 can also be obtained with an additional switching output (see Switching outputs). Please contact HEIDENHAIN for more information.

The EIB 5281 and EIB 5211 are designed for encoders with the EnDat 2.2 interface. They transmit the temperature to the control as an analog value (PT 1000 emulation). The digitized temperature value is transmitted from the EIB 5211 to the encoder, and then from the encoder over the interface to the control. The encoder must have been appropriately designed for this type of operation. Suitable at present are the RCN 2001, RCN 5001, and RCN 8001 series. Please contact HEIDENHAIN for information about the availability of other encoders.

The EIB 5212 has additional switching outputs. This makes it possible, for example, to switch off the direct-drive motor via the PLC if the temperature signal cannot be processed directly by the downstream electronics. Two switching outputs are supported:

- Error (temperature > 130 °C)
- Warning (temperature > 100 °C)
- Supply voltage (PELV (7)): 0 V to 36 V
- Switching capacity: max. 32 mW
- Cable length: max. 20 m

For more information, please contact HEIDENHAIN.

In-situ measurement in a direct-drive motor

Installed in an electrical cabinet

DRIVE-CLIQ is a registered trademark of Siemens AG
Compensation of the transmission timing behavior of the temperature measurement for direct-drive motors from ETEL

When a direct-drive motor is required to hold a position at standstill, an asymmetric current distribution may arise. This can cause a winding to overload and lead to a rapid spike in temperature. The simplest way of detecting such an overload is through the use of three switching elements (usually PTC thermistors).

However, because the measurement location and the affected components are thermally decoupled from each other, the winding may become overheated before the switching elements react. When sensors are used instead of switching elements, and when the thermal coupling is known (thermal model), the sudden spike in temperature can be emulated through mathematical compensation of the transmission timing behavior of the temperature measurement. Switch-off occurs much earlier, thereby contributing significantly to protection of the direct-drive motor. The transmission timing behavior of the temperature measurement is largely determined by the thermal coupling between the sensor and the motor winding, and by the design of the direct-drive motor. Different types of direct-drive motors exhibit different time constants. For ETEL direct-drive motors, the exact time constants are known. On the EIB 5181 the time constant for the temperature measurement is 0.8 s. For the EIB 5200 the temperature must be indicated when ordering.

Emulation of PT 1000 behavior

At the control input, the EIB 5181 and EIB 528x emulate the resistance value of a PT 1000 sensor. In determining the temperature value, the control must provide a constant level of current to ensure correct emulation and proper functioning of the control algorithms. The temperature value is then determined through the drop in voltage. If a pulsed current is injected, then proper functioning cannot be guaranteed (e.g., with the 5MΩ sensor module from Siemens). The accuracy of the temperature measurement is also affected by the cable length. The EIB 5181 also emulates the behavior of a PT 1000, but additionally the DIP switches can be used to reconfigure it to emulate a KTY84-130.

Electrical safety

The EIB 5000 features increased insulation separating the motor sensor inputs from the encoder and control connections. The EIB 5000 temperature sensors input safe electrical separation from dangerous electric circuits in accordance with DIN EN 61010-1 and DIN EN 61800-5-1. This ensures effective protection of the downstream electronics.

Cascading

In certain applications (e.g., gantry motors), two direct-drive motors may be controlled by means of a single encoder. To enable temperature monitoring in both direct-drive motors, two EIB sensor boxes can be used in combination. The two sensor boxes must be properly configured (please contact HEIDENHAIN). The EIB 5181 is configured using DIP switches. Cascading is not possible with the EIB 521x, EIB 5291 S or EIB 5291 F.

Monitoring functions

The EIB 5000 uses its analog temperature connection and/or the digital temperature value to output not only the temperature but fault conditions as well:

- Sensor short
- Sensor wire breakage
- Invalid configuration
- Other errors

Power-on behavior

During the initialization phase, the maximum value is output for the temperature. The temperature value then levels out at the actual measured value.

Power supply

The supply voltage from the downstream electronics is passed to the connected encoder via the EIB. The power required for evaluation of the temperature sensors is diverted from the incoming supply voltage by means of galvanic isolation. EIB 5291 S: As opposed to other EIB 5000 units, here the supply voltage for the encoder and also for the EIB 5291 S is designed for a service life of 20 years in accordance with ISO 13849. For more information about using the EIB and the connected encoder in safety-related applications, please contact the manufacturer of the downstream electronics.

Functional safety

The EIB 5291 S is designed for use in safety-related applications only if functional safety is supported by the connected encoder. The characteristics pertaining to functional safety are largely determined by the connected encoder and the downstream electronics (if required, contact the manufacturer; the EIB relays the main characteristics of the encoder). The safety position is also largely determined by the connected encoder and the downstream electronics.

Functional safety (EIB 5291 S)

Additionally true for the EIB 5291 S: The EIB itself does not influence the safety position. The “safe position” and “safety-related measuring step (SMT)” of the connected EnDat encoder are required in order for the safety position to be calculated. For more information, please contact the manufacturer of the downstream electronics. The PFH value of the overall system (EIB 5291 S + encoder) is the sum of the PFH values of the EIB 5291 S and the connected encoder. For information about the encoder, please refer to its documentation (Product Information document, brochure, and mounting instructions). The EIB 5291 S is designed for safety-related applications only if functional safety is supported by the connected encoder. The characteristics pertaining to functional safety are largely determined by the connected encoder and the downstream electronics (if required, contact the manufacturer; the EIB relays the main characteristics of the encoder). The safety position is also largely determined by the connected encoder and the downstream electronics.

EIB 5291 S

Functional safety

Depending on the connected encoder and downstream electronics, suitable for applications with up to:

- SIL 2 as per EN 61508 (further basis for testing: EN 61800-5-2)
- Category 3, PL d as per EN ISO 13849-1:2015

PFH 26 · 10⁻⁹ (with respect to an operating elevation of ≤1000 m above sea level)

In order for the EIB 5291 S to be operated in safety-related applications, the software must be designed in conformity with the downstream electronics with the Drive-CLIQ interface. For more information on availability, please contact the manufacturer. Pay attention to the information provided by the control manufacturer regarding its operation in safety-related applications.
Specifications	EIB 5281/EIB 5282	EIB 5181
Functional safety See Functional safety on page 5
Encoder input
Interface Depends on the encoder 1) 1 Vpp/EnDat 2.1/EnDat 2.2
Ordering designation Depends on the encoder 2) EnDat01/EnDat02/EnDat22
Electrical connection 17-pin M23 flange socket (female) with coupling ring 25-pin D-sub connector (male)
Power supply of encoder The supply voltage from the downstream electronics is relayed to the connected encoder via the EIB
Cable length 3) < 6 m < 100 m
Temperature sensor input
Quantity 3
Connectable sensors 5) KTY 84-130, PT 1000, PTC, PTC triplet
Evaluation accuracy tolerance Typically: ±1 K; maximum: ±2 K
Time constant for temperature measurement Please indicate when ordering Set using DIP switches
Electrical connection 7-pin M17 flange socket (male) 6-pin header (female)
Cable length 6) < 5 m < 45 m (for the KTY 84-130 and a conductor cross section of 0.25 mm²)
Control output
Interface Depends on the encoder 2) 1 Vpp/EnDat 2.1/EnDat 2.2
Ordering designation Depends on the encoder 2) EnDat01/EnDat02/EnDat22
Electrical connection 17-pin M23 flange socket (male) 25-pin D-sub connector (female)
Cable length 3) < 50 m < 3 m
Supply voltage 7) 5 V ±10 % 5 V ±10 %
Power consumption 8) Typically: 200 mW; max. 300 mW Typically: 250 mW; max. 350 mW
Temperature output Emulation of PT 1000 behavior 9) Emulation of PT 1000 or KTY84-130 behavior 10)
Emulation accuracy tolerance Typically: ±3 K; maximum: ±4 K Typically: ±3 K; maximum: ±4 K
Operating temperature 0 °C to 70 °C 11) 0 °C to 40 °C 11)
Storage temperature -30 °C to 70 °C 11)
Vibration 55 Hz to 2000 Hz 100 m/s² (EN 60068-2-6) 300 m/s² (EN 60068-2-27) 10 m/s² (EN 60068-2-6) 30 m/s² (EN 60068-2-27)
Shock 11 ms 112)
Protection EN 60529 IP65/67 (when engaged) IP20
Elevation < 2000 m above sea level
Mass 0.5 kg

1) The EIB 5282 features additional switching outputs (see Switching outputs on page 3)
2) Optimized for EnDat 2.1, determined by the encoder and relayed by the EIB (see also: Using with other controls on page 3)
3) Applies only to HEIDENHAIN cables; be sure to consider the voltage drop
4) For more information, see Temperature evaluation and Monitoring functions
5) Please select when ordering; the EIB 5181 is configured using DIP switches
6) Depends on the expected accuracy, sensor type and conductor cross section; observe any additional information from the motor manufacturer
7) Take the supply voltage range of the encoder into account
8) Without power or current consumption of the encoder; version with switching output: additional power consumption of 50 mW
9) See Emulation of PT 1000 behavior
10) Applies to a cable length < 1 m
11) No condensation; max. humidity of 75 % under continuous operation
Specifications

EIB 5211/5212
EIB 5291F
EIB 5291S

Functional safety
See Functional safety on page 5

Encoder input

Interface
Depends on the encoder

Ordering designation
Depends on the encoder
EnDat 2.2

Electrical connection
12-pin M12 flange socket (female)

Power supply of encoder
See Power supply on page 5
DC 8.0 V ±0.4 V (max. 1800 mW)

Cable length < 6 m

Temperature sensor input

Quantity
3

Connectable sensors
KTY 84-130, PT 1000, PTC, PTC triple

Evaluation accuracy tolerance
Typically: ±1 K; maximum: ±2 K

Time constant for temperature measurement
Please indicate when ordering

Electrical connection
7-pin M17 flange socket (female)

Cable length < 6 m

Control output

Interface
Depends on the encoder
Fanuc DRIVE-CLiQ

Ordering designation
Depends on the encoder
Fanuc 05 DQ01

Electrical connection
8-pin M12 flange socket (male)

Cable length < 100 m < 95 m

Supply voltage
3.6 V to 14 V
DC 24 V (16.0 V to 28.8 V); up to DC 36.0 V possible without compromising functional safety

Power consumption
Typically: 160 mW; max. 210 mW
Typically: 750 mW; max. 1000 mW
Maximum: At 16.0 V: ≤ 3320 mW
At 28.8 V: ≤ 3400 mW
Typically: At 24.0 V: ≤ 1100 mW + 1.15 · PMtyp (PMtyp = Typical power consumption of the encoder)

Operating temperature
0 °C to 70 °C
0 °C to 60 °C

Storage temperature
−30 °C to 70 °C

Vibration
55 Hz to 2000 Hz
100 m/s² (EN 60068-2-6)
300 m/s² (EN 60068-2-27)

Shock
11 ms

Protection
EN 60529
IP65/67 (when engaged)

Elevation
< 2000 m above sea level
< 1000 m above sea level

Mass
= 0.5 kg

Further information:
For detailed descriptions of cables, please refer to the Cables and Connectors brochure.

1) The EIB 5212 features additional switching outputs (see Switching outputs on page 3).
2) Optimized for EnDat 2.2, determined by the encoder and relayed by the EIB (see also Using with other controls on page 3).
3) The encoder must be designed for connection of the EIB 521x or the EIB 5291S.
4) Applies only to HEIDENHAIN cables; be sure to consider the voltage drop.
5) For further information, please refer to Temperature evaluation and Monitoring functions.
6) Please select when ordering.
7) Observe the information from the motor manufacturer.
8) Take the supply voltage range of the encoder into account.
9) Without power or current consumption of the encoder (version with switching output: additional power consumption of 50 mW).
10) No condensation; max. 75% humidity in continuous operation.
Directives and standards

Directives
The EIB 5000 meets the requirements of the following directives:

EU
2006/42/EC (EIB 5291 S only)
2014/30/EU
2011/65/EU

UK
SI 2008 No. 1597 (EIB 5291 S only)
SI 2016 No. 1091
SI 2012 No. 3032

Standards
Emission
EIB 5181 EN 50370-1
EIB 52xx EN 61000-6-4

Immunity
EIB 5181 EN 50370-2
EIB 52xx EN 61000-6-2
EIB 5291 S additionally EN 61800-5-2

Product standard for adjustable speed electrical power drive systems
EN 61800-5-1

Standard for electrical equipment for measurement
EN 61010-1

NRTL
UL 61010-1
CAN/CSA-C22.2 No. 61010-1

Further information:
To ensure proper and intended use, comply with the specifications in the following documents:
- Brochure, Product Information, and Mounting Instructions of the connected encoder
- Operating Instructions: EIB 518x, EIB 521x, EIB 5291 S
- Operating Instructions: EIB 528x, EIB 5291 F 1386382-xx
- Installation Instructions: EIB 5000 1390004-xx